Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities

نویسندگان

  • Landon Pastushok
  • Michelle Hanna
  • Wei Xiao
چکیده

In response to replication-blocking DNA lesions, proliferating cell nuclear antigen (PCNA) can be conjugated with a single ubiquitin (Ub) or Lys63-linked Ub chains at the Lys164 residue, leading to two modes of DNA damage tolerance (DDT), namely translesion synthesis (TLS) and error-free DDT, respectively. Several reports suggest a model whereby monoubiquitylated PCNA recruits TLS polymerases through an enhanced physical association. We sought to examine this model in Saccharomyces cerevisiae through artificial fusions of Ub to PCNA in vivo. We created N- and C- terminal gene fusions of Ub to PCNA-K164R (collectively called PCNA.Ub) and found that both conferred tolerance to DNA damage. The creation of viable PCNA.Ub strains lacking endogenous PCNA enabled a thorough analysis of roles for PCNA mono-Ub in DDT. As expected, the DNA damage resistance provided by PCNA.Ub is not dependent on RAD18 or UBC13. Surprisingly, inactivation of TLS polymerases did not abolish PCNA.Ub resistance to DNA damage, nor did PCNA.Ub cause elevated spontaneous mutagenesis, which is a defining characteristic of REV3-dependent TLS activity. Taken together, our data suggest that either the monoubiquitylation of PCNA does not promote TLS activity in all cases or PCNA.Ub reveals a currently undiscovered role for monoubiquitylated PCNA in DNA damage tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-damage tolerance mediated by PCNA•Ub fusions in human cells is dependent on Rev1 but not Polη

In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue, leading to two modes of DNA-damage tolerance, namely, translesion DNA synthesis (TLS) and error-free lesion bypass. Although the majority of reported data support a model whereby monoubiquitinated PCNA enhances its affinity for TLS polymerases and hence r...

متن کامل

Characterization of human Spartan/C1orf124, an ubiquitin-PCNA interacting regulator of DNA damage tolerance

Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork collapse, increased mutagenesis and genomic instability. Replication through DNA lesions depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA), which enable translesion synthesis (TLS) and template switching, respectively. A proper replication fork rescue is ensured by the dy...

متن کامل

Intrinsic Flexibility of Ubiquitin on Proliferating Cell Nuclear Antigen (PCNA) in Translesion Synthesis*

Ubiquitin conjugation provides a crucial signaling role in hundreds of cellular pathways; however, a structural understanding of ubiquitinated substrates is lacking. One important substrate is monoubiquitinated PCNA (PCNA-Ub), which signals for recruitment of damage-tolerant polymerases in the translesion synthesis (TLS) pathway of DNA damage avoidance. We use a novel and efficient enzymatic me...

متن کامل

Characterization of human translesion DNA synthesis across a UV-induced DNA lesion

Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA...

متن کامل

The Transcription Factor TFII-I Promotes DNA Translesion Synthesis and Genomic Stability

Translesion synthesis (TLS) enables DNA replication through damaged bases, increases cellular DNA damage tolerance, and maintains genomic stability. The sliding clamp PCNA and the adaptor polymerase Rev1 coordinate polymerase switching during TLS. The polymerases Pol η, ι, and κ insert nucleotides opposite damaged bases. Pol ζ, consisting of the catalytic subunit Rev3 and the regulatory subunit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010